
Week 5 - Monday

 What did we talk about last time?
 Vigenère cipher
 Work time for Assignment 3

 Data is a collection of items
 Often numbers
 Collected by observation or measurement

 In the modern age, companies and businesses can collect millions
of data points every day
 Weather information
 Customer purchases
 Online behavior
 Sales numbers

 Fortunately, computers are great at storing and processing huge
amounts of data

 Assignment 3 included a function to find the biggest of three
things

 What if we wanted the biggest of four things?

 The code is getting more and more complicated
 We have to use a different function for different numbers of items

def biggest(a, b, c, d):
largest = a
if b > largest:

largest = b
if c > largest:

largest = c
if d > largest:

largest = d
return largest

 To avoid the messiness of having a new variable for each piece of
data, Python provides data structures
 Strings
 Lists
 Dictionaries
 Tuples
 Ranges

 A single data structure can hold many pieces of data
 These data structures all allow iteration
 Visiting each item of data inside them

 Data structures have different ways to index into them, meaning
getting the contents inside

 Data structures use different delimiters to mark their contents:
(), {}, [], '', ""

Contents
Homogeneous data structures hold
items that are all the same kind

Heterogeneous data structures can
hold different kinds of data

Ordering
Ordered (or sequential) data
structures hold items in a particular
order

Unordered (or non-sequential) data
structures make no guarantees about
the order of items

Mutability
Mutable data structures can have
their contents changed

Immutable data structures cannot
be changed

 Let's start with strings, since they're a data structure we know
 Homogeneous: all contents are characters
 Sequential: characters are stored in a particular order
 Immutable: a string can't be changed
 Delimited by '' or ""
 Indexed by integer position using []
 Negative indexing is allowed
 Slicing with [:] is supported

 Python provides a way to make lists of general objects
 To make a list, you can put a collection of objects inside

square brackets

 They can even be different types

days = ['Monday', 'Tuesday', 'Wednesday', 'Thursday',
'Friday', 'Saturday', 'Sunday']

stuff = ['Danger!', 3, True, 1.7]

 Using the terminology introduced before, lists are:
 Heterogeneous: you can put different kinds of data into a list, but Python

programmers usually try not to do this, since it's confusing
 Sequential: items are stored in a particular order
 Mutable: individual items can be changed, and the size of the list can be

changed
 Delimited by []
 Indexed by integer position using []
 Negative indexing is allowed
 Slicing with [:] is supported

 As with strings, use square brackets and a number to access
an element in the list

 Like strings, elements are numbered from 0 to the length – 1
 You can use the len() function to get the length of a list

days = ['Monday', 'Tuesday', 'Wednesday', 'Thursday',
'Friday', 'Saturday', 'Sunday']
bleh = days[0] # contains 'Monday'

count = len(days) # contains 7

 You can also change the elements in a list using the square
bracket notation

 This is one of the bigger differences between strings and
general lists

 You cannot change the characters in a string
 You have to make a new string

birds = ['Duck', 'Duck', 'Duck']
birds[2] = 'Goose'
print(birds) #prints ['Duck', 'Duck', 'Goose']

 Just like strings, you can use the slice notation to get a copy of
part of a list

 The same shortcuts for string slices still work:
 Python assumes 0 if you leave off the first number
 It assumes the length if you leave off the last number

days = ['Monday', 'Tuesday', 'Wednesday', 'Thursday',
'Friday', 'Saturday', 'Sunday']
weekend = days[5:7]
print(weekend) #prints ['Saturday', 'Sunday']

weekdays = days[:5] #Monday through Friday

 Like with strings, you can multiply a list by an integer to get a
list made up of multiple copies of the list repeated

greeting = ['Hello']
manyGreetings = greeting * 5
manyGreetings contains:
['Hello', 'Hello', 'Hello', 'Hello', 'Hello']

 Just like an empty string, you can have an empty list

 Such a list contains no items and has a length of zero

 Why would you want an empty list?

data = []

length = len(data)
print(length) #prints 0

 You can add elements to a list, empty or otherwise
 One way is by using the append()method, which adds

elements to the end of a list

 There are other ways to add (and remove) items from a list

data = []
data.append(3)
data.append(7)
data.append(8)
print(data) # prints [3, 7, 8]

Method Example Description

list list(range(100)) Make a list from the given sequence

append items.append('goat') Add an item to the end of the list

insert items.insert(4, 'thing') Insert an item at a location, moving everything else down

pop items.pop() Remove the last item in the list and return it

pop items.pop(5) Remove item at a given location ad return it

sort items.sort() Sort the list

reverse items.reverse() Reverse the list

index items.index('walnut') Return the first location where an item can be found

count items.count('apple') Count the occurrences of an item

remove items.remove('goat') Remove the first occurrence of an item

clear items.clear() Remove everything from a list

 Sometimes you get a string that contains a lot of words
 You'd like to split the string up into a list of those individual

words so that you can deal with each
 Calling the split(' ') method breaks up a string based on

the space character, giving such a list

sentence = 'I seem to be having tremendous difficulty with
my lifestyle.'
words = sentence.split(' ')
print(words[5]) # prints tremendous
print(len(words)) # prints 10

 Just as with strings, we can use a for loop to iterate over
everything in a list

 Directly:

 Or by using an index:

 The first version is simpler, but sometimes we need to know the
index

for item in list:
print(item)

for i in range(len(list)):
print(list[i])

 The Sieve of Eratosthenes is an ancient approach for finding
prime numbers

 Quick reminder: Prime numbers are integers greater than 1
that are divisible only by themselves and 1

 Algorithm:
 Make a list of all the numbers up to some point
 For each prime number, eliminate all the numbers that are multiples

of it
 Working through the list of numbers, each time you find a number

that hasn't been eliminated yet, it must be prime

 Let's use the Sieve of Eratosthenes to print prime numbers up to some number n
 Algorithm:
 Make a list called isPrime of length n + 1 by multiplying a list containing the value True by
n + 1

 Make an empty list called primes
 Loop over every index in isPrime, starting at 2

▪ If its value is True
▪ Append the index to the list primes
▪ Loop from twice the index up to the end of isPrime, taking steps as big as the index
 Mark each element False, since it's a multiple of index

 Return primes

def eratosthenes(n):

 Let's consider only the numbers from 1 to 10 to keep it simple
 We make a list that includes 0 and 1, just to make the indexes easy to deal with

 Starting at index 2, we mark every multiple of 2 (starting at 4) False

 Then, on the next True element (3), we mark all the multiples of 3 (starting at 6) False

True True True True True True True True True True True

0 1 2 3 4 5 6 7 8 9 10

True True True True False True False True False True False

0 1 2 3 4 5 6 7 8 9 10

True True True True False True False True False False False

0 1 2 3 4 5 6 7 8 9 10

 Statistics
 Mean
 Median
 Mode

 Dictionaries

 Focus on section 4.5 of the textbook
 Start Assignment 4

	COMP 1800
	Last time
	Questions?
	Assignment 4
	Data
	Managing data
	Example: Finding the biggest of four things
	Collections
	Terminology
	Strings
	Lists
	Lists
	Lists
	Accessing an element
	Changing elements in a list
	Slices on lists
	Multiplying a list
	Empty list
	Adding elements to a list
	Useful list methods
	split() method
	Looping over the contents of lists
	Sieve of Eratosthenes
	Sieve of Eratosthenes
	Visualization of Sieve of Eratosthenes
	Upcoming
	Next time…
	Reminders

